Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Hum Neurosci ; 18: 1245707, 2024.
Article in English | MEDLINE | ID: mdl-38571523

ABSTRACT

Background: Motor Imagery (MI) is a cognitive process consisting in mental simulation of body movements without executing physical actions: its clinical use has been investigated prevalently in adults with neurological disorders. Objectives: Review of the best-available evidence on the use and efficacy of MI interventions for neurorehabilitation purposes in common and rare childhood neurological disorders. Methods: systematic literature search conducted according to PRISMA by using the Scopus, PsycArticles, Cinahl, PUBMED, Web of Science (Clarivate), EMBASE, PsychINFO, and COCHRANE databases, with levels of evidence scored by OCEBM and PEDro Scales. Results: Twenty-two original studies were retrieved and included for the analysis; MI was the unique or complementary rehabilitative treatment in 476 individuals (aged 5 to 18 years) with 10 different neurological conditions including, cerebral palsies, stroke, coordination disorders, intellectual disabilities, brain and/or spinal cord injuries, autism, pain syndromes, and hyperactivity. The sample size ranged from single case reports to cohorts and control groups. Treatment lasted 2 days to 6 months with 1 to 24 sessions. MI tasks were conventional, graded or ad-hoc. MI measurement tools included movement assessment batteries, mental chronometry tests, scales, and questionnaires, EEG, and EMG. Overall, the use of MI was stated as effective in 19/22, and uncertain in the remnant studies. Conclusion: MI could be a reliable supportive/add-on (home-based) rehabilitative tool for pediatric neurorehabilitation; its clinical use, in children, is highly dependent on the complexity of MI mechanisms, which are related to the underlying neurodevelopmental disorder.

2.
Front Pediatr ; 10: 775356, 2022.
Article in English | MEDLINE | ID: mdl-35155305

ABSTRACT

INTRODUCTION: The emergence of gaming technologies, such as videogames and virtual reality, provides a wide variety of possibilities in intensively and enjoyably performing rehabilitation for children with neurological disorders. Solid evidence-based results are however required to promote the use of different gaming technologies in pediatric neurorehabilitation, while simultaneously exploring new related directions concerning neuro-monitoring and rehabilitation in familiar settings. AIM OF THE STUDY AND METHODS: In order to analyze the state of the art regarding the available gaming technologies for pediatric neurorehabilitation, Scopus and Pubmed Databases have been searched by following: PRISMA statements, PICOs classification, and PEDro scoring. RESULTS: 43 studies have been collected and classified as follows: 11 feasibility studies; six studies proposing home-system solutions; nine studies presenting gamified robotic devices; nine longitudinal intervention trials; and eight reviews. Most of them rely on feasibility or pilot trials characterized by small sample sizes and short durations; different methodologies, outcome assessments and terminologies are involved; the explored spectrum of neurological conditions turns out to be scanty, mainly including the most common and wider debilitating groups of conditions in pediatric neurology: cerebral palsy, brain injuries and autism. CONCLUSION: Even though it highlights reduced possibilities of drawing evidence-based conclusions due to the above outlined biases, this systematic review raises awareness among pediatricians and other health professionals about gaming technologies. Such a review also points out a definite need of rigorous studies that clearly refer to the underlying neuroscientific principles.

3.
Front Hum Neurosci ; 15: 649533, 2021.
Article in English | MEDLINE | ID: mdl-34434095

ABSTRACT

Healthy and pathological human walking are here interpreted, from a temporal point of view, by means of dynamics-on-graph concepts and generalized finite-length Fibonacci sequences. Such sequences, in their most general definition, concern two sets of eight specific time intervals for the newly defined composite gait cycle, which involves two specific couples of overlapping (left and right) gait cycles. The role of the golden ratio, whose occurrence has been experimentally found in the recent literature, is accordingly characterized, without resorting to complex tools from linear algebra. Gait recursivity, self-similarity, and asymmetry (including double support sub-phase consistency) are comprehensively captured. A new gait index, named Φ-bonacci gait number, and a new related experimental conjecture-concerning the position of the foot relative to the tibia-are concurrently proposed. Experimental results on healthy or pathological gaits support the theoretical derivations.

4.
IEEE Trans Biomed Eng ; 60(1): 135-9, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23086500

ABSTRACT

The heart rate can be effectively used as a measure of the exercise intensity during long duration cycle-ergometer exercises: precisely controlling the heart rate (HR) becomes crucial especially for athletes or patients with cardiovascular/obesity problems. The aim of this letter is to experimentally show how the nonlocal and nonswitching nonlinear control that has been recently proposed in the literature for the HR regulation in treadmill exercises can be effectively applied to cycle-ergometer exercises at constant cycling speed. The structure of the involved nonlinear model for the HR dynamics in cycle-ergometer exercises is mathematically inspired by the structure of a recently identified and experimentally validated nonlinear model for the HR dynamics in treadmill exercises: the role played by the treadmill speed is played here by the work load while the zero speed case for the treadmill exercise is here translated into the cycling operation under zero work load. Experimental results not only validate the aforementioned nonlinear model but also demonstrate the effectiveness--in terms of precise HR regulation--of an approach which simply generalizes to the nonlinear framework the classical proportional-integral control design. The possibility of online modifying the HR reference on the basis of the heart rate variability (HRV) is also suggested and experimentally motivated.


Subject(s)
Ergometry/methods , Exercise/physiology , Heart Rate/physiology , Signal Processing, Computer-Assisted , Adult , Humans , Male , Nonlinear Dynamics
5.
IEEE Trans Biomed Eng ; 59(3): 599-603, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22167561

ABSTRACT

It has been recently shown in the literature that a robust output feedback controller for the heart rate regulation can be designed for an experimentally validated second order nonlinear model of the human heart rate response during long-duration treadmill exercises: It is based on piecewise linear approximations of the original nonlinear model and involves (local) robust linear control techniques. In this letter, we resort to recent nonlinear advanced control techniques in order to illustrate the existence of a nonlocal and nonswitching control which guarantees heart rate regulation with no exact knowledge of model parameters and nonlinearities: It simply generalizes to the nonlinear framework the classical proportional-integral control design for linear models of heart rate response during treadmill exercises. Simulation and experimental results demonstrate the effectiveness of the proposed approach in typical training exercises involving warm up/holding/cool down phases.


Subject(s)
Exercise Test/methods , Exercise Therapy/methods , Heart Rate/physiology , Nonlinear Dynamics , Physical Exertion/physiology , Algorithms , Feedback, Physiological , Homeostasis/physiology , Humans , Microcomputers
SELECTION OF CITATIONS
SEARCH DETAIL
...